Introduction

Background.

If the background doesn’t interest you, and you just want to get started with La-
texslides, jump to the ’Getting started’ section.

For many people in the fields of natural sciences, ITEX is the preferred typeset-
ting tool. Therefore, it didn’t take long before different packages where developed
allowing people to also create slides with IXTEX. Out of many, Prosper and Beamer
are probably the best known. The most popular package of these two is Prosper,
while Beamer is the latest, the fanciest, and the most PowerPoint-like package for
ETEX slides. Unfortunately, there is a lot of IXTEX commands that you need to
insert to make IATEX slides. What if we could just write the basic slide contents
and insert a minimum of tags? That is, it could be nice with a simpler syntax than
what ATEX slide packages require.

Another point is that it takes quite some boring work to update old presenta-
tions, written in Prosper or even older syntax, to a new package like Beamer. And
what about the next super-package for ITEX slides? It would be good if all your
slides were written with a ATEX-independent syntax such that the slides can easily
be ported to a new (or old) format.

A third point is that sometimes we would like to automate the writing of slides,
for example when creating animations where several slides with small differences
are typically written by manual cut and paste operations. It would be better to
have a program doing this.

From these points, it became natural to specify slides as program code and auto-
mate the generation of the specific syntax for different ITEX packages. Our solution
is Latexslides, which is written in Python and requires you to write your slides in
Python. Typically, each slide is a s1ide object, to which you assign a name, and then
you can collect the names in lists to compose a particular presentation. It is easy
to have your slides in modules such that new presentations can import slides from
other presentations. This gives great flexibility in reusing slides from presentation
to presentation without making a copy of the slides. The KTEX knowledge required
from the end-user is also less when using Latexslides than using plain BTEX (then
again, the Python knowledge needed is much larger). But some of the advanced
arguments to Latexslides functions might still require a good I¥TEX book.

Another important point is, of course, that whatever can be done in Python,
should be done in Python :-) Also slides...

History.

Initially, LaTexslides was a module and script written by Hans Petter Langtangen
and later improved by Asmund @degard, both at Simula Research Laboratory,
Oslo, Norway. LaTexslides soon became quite popular as it auto-generated both
Beamer and Prosper slides from a minimum of Python commands specifying the
slides. However, LaTexSlides needed a complete redesign to better scale with future
demands. Arve Knudsen, also from Simula, started this effort, while this author
did the complete job of creating the new Latexslide package for slide generation in
Python. The old API of LaTexs1ides is still supported for backward compatibility.

Getting started

If you want to get started with a more advanced example, it is recommended that
you take a look at the file doc/exampletalk.py which demonstrates many of the func-
tionalities that are available. Going through the source code of this talk at the same

time as reading the PDF generated from it, should get you started in less than half
an hour.

Introductory example.

You can generate a new, empty presentation by typing

python -c ’import latexslides; latexslides.generate("myfile.py")’

Just invoke and edit the file myfile.py.

We will now look at a short example introducing the main functionalities of
Latexslides. We look at the source code of two slides, and the result for Beamer
can be viewed in the figures below. The first slide consists of two parts, the left
part contains a figure, and the right part contains some text as well as a few lines
of code, see Figures1 and[2l The Python code used for generating these slides is
as follows:

from latexslides import x*
author_and_inst = [("John Doe", "Royal University of Nothing")]

slides = BeamerSlides(title="Short Introduction",
titlepage=False,
toc_heading=None,
author_and_inst=author_and_inst,)

slidel = Slide("Slide 1",

content=[TextBlock(r"""
Program for computing the height of a ball thrown up in the air:
$y=v_0t- {1\over 2} gt~2%""") ,

Code(file=’code.py’)],

figure=’brainhurts.ps’,

figure_pos=’w’,

figure_fraction_width=0.4,

left_column_width=0.3,

)

slide2 = BulletSlide("Slide 2",
["Latexslides is flexible:",
["One can create slides based on Python elements",
r"\LaTeX"code can be inserted directly in the code"],
"Latexslides means less code and less time used:",
["The code is generated automatically",
r"One does not need to learn \LaTeX"],
"The package is easily installed by typing" +
Code("python setup.py install"),],
block_heading="Advantages of latexslides",

collection = [slidel, slide2]
slides.add_slides(collection)

Dump to file:
slides.write("intro.tex")

Before dissecting each individual slide, we will take a look at the general layout
of this code. First, we need to import the Python module. Then, we define the
parts of the presentation that are common for all slides, including the name and
affiliation of the authors and the date. This is done by creating an instance of one
of the subclasses of s1ides, meaning either BeamerSlides, ProsperSlides Or HTMLSlides,
hereafter referred to as the main instance. Here we also define what both the title
page and the rest of the presentation should look like, and how it should behave.
The details on this can be found further down in this tutorial. For this introductory
example, we have opted to show neither the title page nor the table of contents.

The next step is to define the objects that represent a slide. When we are
finished with all slides, we have to collect them and add them to the main instance
in the order we would like them to appear. Finally, we dump the whole presentation
to file.

Our first slide is a general siide object. The title is set to ”Slide 17, and a
figure is included on the slide. The figure is placed to the left of the slide, and set
not to exceed more than 3/10 of the slide. It also had to be shrunk to 4/10 of its
original size to fit on the slide. The right side of the slide consists of two elements,
a TextBlock and some code. It is worth noticing that the Python code displayed on
this slide is not part of the code defining the slide. Rather, we give the code class an
argument file=code.py, resulting in the Python code being read from the file code.py.
Figure [1] displays the first slide.

Slide 1

My brain hurts!

Program for computing the height of a ball
thrown up in the air: y = vyt — %gt2 J

vO = 5 # initial velocity

9.81 # acceleration of gravity

0.6 # time

vO*t - 0.5%g*xt**2 # vertical position
rint y

g
t
y
p

Doe Short Introduction

Figure 1: First slide of introductory example.

The second slide is a Bulletslide, which is less general than the super class Siide.
This means that we have a less complicated interface at the cost of flexibility. The
bullets are lists of string elements, but nested lists are allowed, as is shown. Finally,
we opted to add a heading to the block making up the bullets. If omitted, no
heading is displayed. Figure 2 displays the second slide.

Documentation of the classes

Keyword arguments.

Objects in Latexslides makes heavily use of keyword arguments. This means that
when creating a new object, there are very few, if any, arguments that are manda-
tory. A lot of arguments are optional, and will be ignored if not present, or suitable
default values will be used.

Initialization.

After an

from latexslides import x*

Slide 2

Advantages of latexslides

o Latexslides is flexible:

o One can create slides based on Python elements
o IATEX code can be inserted directly in the code

@ Latexslides means less code and less time used:
@ The code is generated automatically
@ One does not need to learn IATEX

@ The package is easily installed by typing
python setup.py install

Doe Short Introduction

Figure 2: Second slide of introductory example.

the first instance we need to create is an instance of a subclass of the class Siides.
This can be (at this time) either ProsperSlides, BeamerSlides or HTMLSlides. The
default values and the Python data types for each keyword argument will be given
below as 'Default’” and "Type’. If a keyword argument not works for all packages
(subclasses), the name of the packages for which it works for will be given as well
under 'Package’. Finally, necessary comments will be given under 'Comments’. It
is worth noting the use of the keyword arguments n, s, e, and w. These correspond
to north, south, east, and west, respectively. North indicates the top of a page, east
the left of a page etc.
Here is a list of keyword arguments for the constructor of a siide instance:

® title

— Default: "Here goes the title of the talk"

— Type: str
® author_and_inst

— Default: [(’author1l’, ’inst1’), (’author2’, ’inst2’, ’inst3’)]

— Type: list of tuples of str
® date

— Default: None
— Type: str

— Comment: Today’s date is chosen if not set.

® titlepage

— Default: True
— Type: bool
— Comment: If set to False, the title page is skipped.

® titlepage_figure
— Default: None
— Type: str
— Package: Beamer

— Comment: Give name of figure file to appear on title page.
® titlepage_figure_pos

Default: "s®

Type: str

Package: Beamer

— Comments: Position of figure on the title page. Values can be either e,
or s. Really, anything but s results in e.

® titlepage_figure_fraction_width
— Default: 1.0
— Type: float

— Package: Beamer

— Comment: Scales the picture, while keeping aspect ratio.
® titlepage_left_column_width

Default: 0.5

— Type: float
— Package: Beamer

— Comment: If the figure is positioned to the left or right, two columns are
used. This value sets the relative size of the left column, and should be
between 0 and 1. The size of the right column is 1 minus this value.

® short_title

Default:

Type: str

— Package: Beamer

— Comment: This value, if present, is used instead of the main title if it is
too large to fit somewhere in the presentation.

® short_author

— Default: None
— Type: str
— Package: Beamer

— Comment: If the name of the authors(s) is too long to fit, this value, if
present, is used instead. Else a string consisting of the first author’s last
name with ’et al.” added to it is used.

® copyright_text

— Default: None
— Type: str
— Package: Prosper

® toc_heading

— Default: "outline"
— Type: str
— Package: Beamer

— Comment: The heading of table of contents, shown between all sections
and subsections. If set to None or an empty string, the table of contents
is skipped. This might be preferable for shorter presentations.

® toc_figure

— Default: None

— Type: str

— Package: Beamer

— Comment: Give name of file containing the figure to be shown on the
table of contents slide.

® toc_figure_fraction_width

— Default: 1.0
— Type: float
— Package: Beamer

— Comment: Scales the picture, while keeping aspect ratio.
® toc_left_column_width

— Default: 0.5
— Type: float
— Package: Beamer

— Comment: The figure is positioned to the left of the table of contents,
hence two columns are used. This value sets the size of the left column,
the size of the right column is 1 minus this value.

® colour

— Default: True
— Type: bool

— Comment: A False value makes the slides more suited for printing. Table
of contents is dropped, and colours are removed from the background.
Different behaviour for the different packages. Beamer forces the use of
the theme seahorse when the value is False.

® handout

— Default: False
— Type: bool

— Package: Beamer

Comment: Makes the slides more suited for printing. The table of con-
tents is dropped, and colours are removed from the background. Different
behaviour for the different packages. The same as colour, but without
seahorse as the forced colour theme.

® beamer_theme

Default: "shadow"
Type: str
Package: Beamer

Comment: All default Beamer themes are available. In addition the
themes simula and np11 are included with the Latexslides package. Dif-
ferent themes might lead to different output. The use of simula or hpl1 is
recommended. Read more about styles in the section ”Styles”.

® beamer_colour_theme

Default: "default"
Type: str
Package: Beamer

Comment: All default Beamer colour themes are available. For printing,
the colour theme seahorse is recommended, as it is almost black and
white. Take care not to use the simula theme with this one, as not all
colours that are set there are overridden by this colour theme, resulting
in some orange. If colour is set to False, this argument is overridden and
the theme set to seahorse.

® prosper_style

Default: "default"

Type: str

Package: Prosper

Comment: all default Prosper styles are available. In addition the
style nplplainsmall is included with the Latexslides package. The use of
hplplainsmall is recommended, as it matches the font sizes of the Beamer

themes better, making it less likely for text not to fit on the slides when
switching from Beamer to Prosper than with default.

® header_footer

® html

Default: True
Type: bool
Package: Beamer

Comment: Removes the top and bottom of the slide. On the top, the
index over sections is removed, at the bottom the authors and title are
removed. Theme dependent.

Default: False
Type: bool

Package: Beamer

— Comment: This enables the possibility to dump the slides to HTML.
Setting this variable to True and toc_heading to an empty string gives the
same result as using HTMLSlides instead of BeamerSlides (HTMLSlides
simply sets this variable to True and toc_heading to an empty string).
Requires the package TeX4ht to be installed.

® newcommands

— Default: 1
— Type: list or str

— Comment: Adds the user’s own commands to the top of the ITEX file,
useful because Latexslides supports raw TEX code. Can be given as
a list of strings or a string separated by newline. Only \newcommand
BTEX commands can be given. The initial command (\newcommand) can
be skipped.

® latexpackages
— Default: "
— Type: str

— Comment: Adds additional packages to the list of packages at the be-
ginning of the KTEX file. In order to allow options to the packages, it is
a simple multi-line string, e.g. the exact string otherwise written in the

BTEX file.

Adding slides.

After having created the BeamerSlides Or ProsperSlides object, we are ready to start
creating individual slides. There are five types of slides:

® TextSlide
® BulletSlide
® Rawslide

® TableSlide
® Slide

The last one can consist of several objects, whereas the first four slides are meant
for plain text, plain bullet lists, creation of I¥TEX tables based on Python lists, or
plain IXTEX, respectively. For these, blocks are used when available.

TextSlide has the following keyword arguments:

® title
— Default:
— Type: str

— Comment: When empty string is given, no title is displayed.
® text

— Default:
— Type: str
— Comment: The text to be placed on the slide.

® block_heading

— Default: »»

— Type: str

— Comment: Additional title for the block. When empty string is given,
no title is displayed.

® hidden

— Default: False
— Type: bool

— Comment: If True, the slide is skipped. The properties hide and unhide
can also be used, and will return the slide element itself, see the sections
’Organizing the objects’ and "Writing to file’ further down.

BulletSlide has four keyword arguments:
e title

— Default: »»

— Type: str

— Comment: When empty string is given, no title is displayed.
® bullets

— Default: 1
— Type: list of strings

— Comment: Each element in the list represents a bullet. The list can be
nested, so that if one of the elements of the main list is a list, the items
in that list will show up as sub-bullets.

® block_heading

— Default: »»

— Type: str

— Comment: Additional title for the block. When empty string is given,
no title is displayed.

® hidden

— Default: False
— Type: bool
— Comment: If True, the slide is skipped.

— Default: None
— Type: str
— Package: Beamer

— Comment: Available dimming settings are: progressive (one by one bul-
let), single (only one bullet at the time), single_then_all (only one bullet
at the time, then all), and blocks (one block at the time, not relevant for
BulletSlide).

RawSlide has two keyword arguments:
® rawtext

— Default: »»
— Type: str

— Comment: Enables the user to design her own slide using BTEX com-
mands directly. For example, one can include pure KTEX code from old
presentations. One should ensure that the string is a raw string preserv-
ing backslash and the like. If this class is used, changing between the dif-
ferent packages (e.g. Beamer and Prosper) would no longer be possible,
as the code for these two differ quite a bit. As HTMLSlides is compatible
with BeamerSlides these two, however, can still be interchanged.

® hidden
— Default: False
— Type: bool
— Comment: If True, the slide is skipped.

TableSlide enables the generation of I#TEX tables based on nested Python lists, and
has seven keyword arguments:

® title

— Default:

— Type: str

— Comment: When empty string is given, no title is displayed.
® table:

— Default: (11,111

— Type: Nested list of strings

— Comment: The first entry in the outer list should contain the column
heading for the XTEX table to be generated. The remaining entries are
the lines in the table. See also the documentation of Table further down.

® column_heading_pos
— Default: "c"
— Type: str

— Comment: See documentation of Table.

® column_pos

— Default: "c"
— Type: str

— Comment: See documentation of Table.
® center

— Default: False
— Type: bool

— Comment: See documentation of Table.

10

® block_heading

— Default: »v
— Type: str

— Comment: Additional title for the block. When empty string is given,
no title is displayed.

® hidden

— Default: False
— Type: bool
— Comment: If True, the slide is skipped.

Slide.

A general slide can consist of several objects, and we will look at them now:
® Text
® BulletList
® Code
® Table
® Block
® TextBlock
® BulletBlock
® CodeBlock
® TableBlock

The difference between a plain object (like BulletList) and a block object (like
BulletBlock), is that the latter is surrounded by a shadowed box (depending on the
slide format, Beamer or Prosper, for instance), and has an optional heading for that
box.

Text takes only one argument, and that is the text.

BulletList has bullets as argument and dim as keyword argument:

® bullets
— Default:]
— Type: list of strings

— Comment: Each element in the list represents a bullet. The list can be
nested, so that if one of the elements of the main list is a list, the items
in that list will show up as sub-bullets.

® dim

— Default: True
— Type: bool

— Package: Beamer

11

— Comment: This one is only used to override dimming if dimming is
turned on for the whole slide, so that the whole block is displayed at
once even though the rest of the bullet objects on the slide appear one
by one.

Code has a number of keyword arguments, mainly because it supports the option of
reading the code from a file, or even only reading the text in between a start and a
stop expression:

® code

— Default: None

— Type: str

— Comment: The code to be inserted. Is ignored if reading from file is
chosen.

e file

— Default: None

— Type: str

— Comment: The name of the file to include code from. If from_regex or
to_regex is not set, the whole file is included.

® from_regex

— Default: None
— Type: str

— Comment: Can only be used if to_regex is set as well. The file in inspected
line for line, and if the regular expression matches, that line is included.
All further lines are then included, until there is a match for to_regex.
The line that matches to_regex itself is not included.

® to_regex

— Default: None
— Type: str

— Comment: See from_regex
® leftmargin

— Default: "7mm"
— Type: str
— Comment: Sets the left margin for the code.
® fontsize
— Default: "footnotesize" (if the string does not start with a backslash, it
is added automatically).
— Type: str

— Comment: Sets the size of the code font. Needs to be a valid BTEX com-
mand ranging from tiny to Huge (if the string does not start with a back-
slash, it as added automatically).

12

Table gives us the possibility for creating IWTEX tables directly based on (nested)
Python lists. Writing tables in ATEX is a tedious task, so automatically generating
it based on the Python lists saves us the effort of having to do it manually. Also,
if we need to make changes to our table, we can simply change the Python lists, as
the IMTEX table is built over again every time we run Latexslides. Table has table
as argument in addition to two keyword arguments:

® table

— Default: [[1,01]
— Type: Nested list of strings

— Comment: The first entry in the main list will be column headlines. The
next entries in the list are the rows following the headline. All nested
lists (i.e. each element in the main list) should have the same length.
For example: table=[[r"h", r"Ω", "n"1, [0.1, 0.001, 100]1]1. If an
element encountered in one of the sub-lists is not a string, the class will
try to cast it to a string.

® column_headline_pos

— Default: "c"

— Type: str

— Comment: The position of the columns for the headline row, valid values
are 1, ¢, and r for left, center, and right, respectively. If only a single
character, it is the same for every column. Else, the characters in the
string are used one-by-one for every column. For instance, the string cr1
would mean that the first headline column is centered, the second one
right justified, and the third one left justified. Unless omitted or given
as a string with length one, it should be the same length as the numbers
of columns.

® column_pos

— Default: "c"
— Type: str

— Comment: The position of the text for each column. If only a single
character, it is the same for every column. Else, the characters in the
string are used one-by-one for every column. For instance, the string cr1
would mean that the first ordinary column (not he headline) is centered,
the second one right justified, and the third one left justified. Unless
omitted or given with length one, it should be the same length as the
numbers of columns given.

Block allows for the creation of block object consisting of a combination of the three
previous types (Text, BulletList, and Code). Hence it is more general than the three
block objects that follow:

® heading

— Default: »»
— Type: str

— Comment: If given, used as block title.

® content

13

— Default: 1
— Type: list

— Comment: All objects to be placed within the block are sent as a list.
TextBlock iS the same as Text, but has an additional keyword argument:
® heading

— Default: "~
— Type: str

— Comment: If given, used as block title.
BulletBlock is the same as BulletList, but has an additional keyword argument:

® heading

— Default: "~
— Type: str
— Comment: If given, used as block title.
CodeBlock is the same as Code, but has an additional keyword argument:
® heading
— Default:
— Type: str

— Comment: If given, used as block title.
TableBlock is the same as Table, but has these additional keyword arguments:

® heading

— Default: »»
— Type: str

— Comment: If given, used as block title.
® center

— Default: False
— Type: bool

— Comment: If True, center the table within the block.

Creating the slide instance. Once we have all the objects we want a slide
to consist of, we can create the slide instance itself. All arguments are keyword
arguments:

® title

— Default: "
— Type: str
— Comment: When empty string is given, no title is displayed.

® content

— Default: 01

14

— Type: list

— Comment: All objects to be placed on the slide are sent as a list.
® figure

— Default: None
— Type: str or tuple of str

— Comment: Give name of file or tuple of file names.
® figure_pos

— Default: s

— Type: str

— Comments: Figure can be placed north (n), east (e), south (s), and west
(w) on the slide. The same for all figures.

® figure_fraction_width

— Default: 1.0
— Type: float

— Comment: Scales the picture, keeps aspect ratio. figure_size can be used
as well. In case both options are given, figure_size is chosen. If multiple
figures are given with figure, the length of this argument is expected to
be the same as the number of figures, or else the program exits with
an error. The exception is if the length of the argument is 1 (or it is
omitted), then this value (or the default of 1) will be used for all figures.

® figure_angle

— Default: None

— Type: int or str

— Comment: Give angle in degrees in the counter-clockwise direction to
rotate image. Negative values can be used. The same for all figures.

® left_column_width

— Default: 0.5
— Type: float

— Comment: If the figure is positioned to the left or right, two columns
are used. This value sets the size of the left column, the size of the right
column is 1 minus this value.

® hidden

— Default: False

— Type: bool

— Comment: If True, the slide is skipped.
® dim

— Default: None

— Type: str

— Package: Beamer

15

— Comment: Available dimming settings are: progressive (one by one bul-
let), single (only one bullet at the time), single_then_all (only one bullet
at the time, then all), and blocks (one block at the time). Sub-items will
always be shown together with their parent. If a specific block has the
option dim set to False, the dim option for the slide is overridden. Setting
dim for a block to False should only be used with progressive, as adding
something to a slide that is not part of a block, can cuase the result to
be unsatisfactory.

Adding sections.

One can insert special slides to mark sections in the talk. The section slides will
automatically appear in a table of contents and optionally in the header in Beamer
(but not in Prosper). Sections are added in the same way as normal slides, except
they are of type Section. If no section is defined, normal slides are simply added to
a list of slides. If a section is defined, all slides added after that object will be part
of this section, until a new section is defined. It has two keyword arguments:

® title
— Default:
— Type: str

— Comment: The title of the section
® short_title

— Default:

— Type: str

— Comment: Used when there is no space for the main title, for instance
in the header.

Adding subsections.

Class SubSection is added in the same way as Section. If a subsection is added before
a section is added, an error is issued and the generation of slides terminated. If a
subsection is defined, all slides added after that object will be part of this subsection,
until a new section or subsection is defined. It has two keyword arguments:

® title
— Default:
— Type: str

— Comment: The title of the section
® short_title

— Default:
— Type: str

— Comment: Used when there is no space for the main title, for instance
in the header.

16

Organizing the objects.

Instead of creating a slide and adding it immediately to the initial siides object
using the the function add_slide in Slides, it might be better to generate all the slide
objects, and then add all the slides at the end of the file. This way, it is easier to
change the order of the slides. This is done in both the introductory example and the
exampletalk.py script. One can either use a ‘for‘-loop and call the function add_slide
for each element in the list, or call the function add_slides which takes the whole
list as argument. If the presentation exists of the objects slidei, sectioni, slide2,
subsectioni, slide3, one can add all those to a list at the end of the presentation. If
slides is the initial s1ide object, and collection is a list of slides, one can use any of
the two following ways of adding the slides in the list to the slides object:

for slide in collection:
slides.add_slide(slide)

or

slides.add_slides(collection)

The list of slide objects can be generated automatically, more about this in the next
section.

Additional scripts

Naming slide objects.

The slide object that one creates need to be stored in a Python variable, and instead
of naming these object siide1, slide2 etc. it would be preferable to name them
according to the slide title. When writing many slides, it would be easier to just
create the slide objects without naming them, and to run a script to automatically
name these objects when finished. The executable create_slidenames which is part
of Latexslides does exactly that. Running

create_slidenames exampletalk.py

means the script searches the given file for lines starting with = slide, = Section, or
= SubSection, and adds a line consisting of the title of the slide before these lines.
Special characters as well as spaces and Norwegian characters are substituted so
the variable name is valid in Python. Spaces and the character ’=: are substituted
by underscores, Norwegian characters are substituted by plain ASCII letters (¢ by
0, & by aa and & by ae), and other characters are simply removed.

Let’s look at an example. The line

= BulletSlide(’Character test !"#%&/ () [1"0QEA’,)

becomes

Character_test_OAEAA \
= BulletSlide(’Character test !"#%&/ () [1"0QEA’,)

and the line

= Section(’More about {if "__name__" == __main__}’,)
becomes

More_about_if___name________ main__ \

= Section(’More about {if "__name__" == __main__}’,)

17

In this way, we don’t need to worry about naming the Python objects. Note that one
needs to use the exact same syntax, i.e. starting a line with the character >= followed
by the name of the class to be used. The space between those two can be skipped.
Also note that the created name of the object does not change automatically if
the title is changed. When running, the script examines the previous line to see
if we already have assigned the instance to a variable name, and if so, nothing is
done. In this way, running the script several times should not result in multiple
declarations of the variable name, however, this also results in the variable name
not being updated when the title of the slide or section is changed. Deleting the
line containing the variable name and running the script again should fix this. Any
instance that already has a variable assigned to it manually on the same line, for
instance when writing myslide = Slide(’This is the title’,), is also skipped. This
script changes the actual file, however a backup is made with the extension .o1d"~,
so running

create_slidenames exampletalk.py

would result in exampletalk.py now containing the variable names as well, whereas
exampletalk.py.old~~ would contain the original file.

Extracting slide names.

Once you are finished writing the talk you need to add all the slide objects to the
main instance of the siides class used (e.g. Beamersiides). The easiest way of keeping
an overview is to do this at the end of the Python file, rather then after creating
each slide, as discussed in the previous section. We included a script for extracting
the variable names of all slides in the file in the script extract_slidenames. It runs
through the file scanning for the variable names, and prints out a Python list in the
terminal that can be copied directly in the the bottom of the Python file. So when
running

extract_slidenames exampletalk.py

the file exampletalk.py remains the same. Instead of copying the test we could add
the list to the bottom of the file automatically:

extract_slidenames exampletalk.py >> exampletalk.py

Note that if we add or remove slides, we need to regenerate this list.

Converting talks to the OpenOffice format.

Another script that comes as part of Latexslides is pdf2odp. It is used for converting
PDF files in general to a format recognized by OpenOffice. This script is described
in more detail in the section "Using talks in OpenOffice’ further down.

Writing to file

When finished writing the presentation, we can dump the ITEX code to file. This
is done by simply calling the function write for the initial siides object (of class
BeamerSlides, ProsperSlides etc.). The argument is the file name. The write function
also outputs the necessary commands one needs to run for creating the slides for
the specific package used (Prosper, Beamer, HTML). So if all slide instances are
collected in a list collection, these are dumped to file by writing
for ¢ in collection:
slides.add_slide(c)

filename = ’mytalk.tex’
slides.write(filename)

18

or (even simpler)

slides.add_slides(collection)
filename = ’mytalk.tex’
slides.write(filename)

If there are some slides that you do not want to be part of the presentation, you
do not have to delete them. You can either remove the slides you do not want to
include from the list, or even simpler, mark them as hidden. This can be done in
three ways.

1. Set the keyword argument hidden to True when creating the slide.

2. Set the attribute hidden to True. If you slide instance is called titleslide, it
will not be printed if you write titleslide.hidden=True.

3. Add the property hide to an object when adding it. It returns the object with
the attribute hidden set to True. So instead of writing

slides.add_slide(titleslide)

you would write

slides.add_slide(titleslide.hide)

Compiling the talk

If the function slides.write() is used, the necessary commands for compiling the
talk are output to screen. If not, one simply uses latex mytalk.tex. Please note that
the generation of HTML slides requires running tex4ht and t4ht afterwards.

About figure support

Because Prosper cannot be used with pdfiatex, latex is recommended. This means,
however, that only .ps images can be used, not .png, if portability between Prosper
and Beamer is desirable. It is recommended that you use the ImageMagick convert
tool for converting the PNG image to PostScript, and including them as .ps or .eps
files.

Using talks in OpenOffice

Latexslides includes a script for converting presentations in the PDF format to the
OpenOffice Impress format (.odp). OpenOffice Impress is a presentation tool simi-
lar to Microsoft Office PowerPoint. OpenOffice is a free, open source alternative to
Microsoft Office. One could convert the .odp file further to a PowerPoint file (.ppt),
either by opening it in Impress and opting to save it as a .ppt file, or through a com-
mandline script like PyODConverter| (http://www.artofsolving.com/opensource/pyodconverter).
Sometimes when giving a presentation, you might experience that the organizers
only accept .ppt or .odp files. pdf2odp, which comes as part of Latexslides, solves this
problem. Of course, not accepting PDF files these days would be surprising, and
hence this is not the main objective of the script. The reason it was written is that
sometimes, one might want to add a few extras to the presentation. For instance,
one could highlight certain words by adding a circle, drawing some arrows, or one
could use some of the advanced possibilities provided by presentation tools like
Impress and PowerPoint without having to write the whole presentation with this
tool, something that we already agreed upon can be rather tedious. In this way,

19

http://www.artofsolving.com/opensource/pyodconverter
http://www.artofsolving.com/opensource/pyodconverter

we can combine the best from two worlds; the simplicity of Latexslides and the
advanced interactive functionality of Impress or PowerPoint.

The script pdf2odp uses a Python module called odfpy. An error is given be-
fore exiting the script in case this module is unavailable. If the module is found,
Ghostscript is used for converting the input file, which should be a PDF file, to a set
of PNG files, one for each page in the input file. This conversion process can take
some time. If Ghostscript is unavailable, the script will exit with an error. When
the conversion is finished, odfpy is used to create the OpenOffice file. Each slide in
the new presentation contains an image that corresponds to the slide in the input
file, and this image covers the whole slide. Finally, the OpenOffice file is saved and
the scripts exits.

As the slides from the original PDF file merely are images in the new .odp file,
we loose some of the functionality from the PDF file, mainly the linking within the
document. With Beamer, for instance, there are links in the presentation allowing
one to navigate within the slides. These links will now simply be part of the image,
and cannot be clicked. Also, as all the text is part of an image, it is no longer
possible to copy the text or index the file in any way.

Package specifics

ProsperSlides.

Some of the keyword arguments are only available to BeamerSlides and HTML-
Slides. If these keyword arguments are present when using ProsperSlides, they are
simply ignored.

HTMLSlides.
HTMLSIlides is really the same as BeamerSlides, with the following modifications:
e The ntm1 keyword for Slides is set to True.

e The toc_heading keyword for Slides is set to en empty string, removing the
table of contents.

e All sections and subsections are removed.

After Latexslides has generated the IXTEX code, the commands texant and taht are
used to generate the actual HTML file.

Styles

Several INTEX styles are included with this package. These are:
e beamerthemsimula.sty
e beamerthemehpll.sty
for Beamer and:
e PPRhplplain.sty
e PPRhplplain2.sty

e PPRhplplainsmall.sty

20

for Prosper. These are located in the folder styles. If you want to use these, you
might want to set the following in your shell start-up file (for Bash, this is ~/.bashrec:

export TEXINPUTS=:.:/absolute/path/to/styles
Note the first °.’; it ensures that the system-wide directories are searched first.

More information on how to install the style files to the correct directories is found
in the README file.

Emacs bindings

The following Emacs command (Alt + up-arrow) starts a slide object without a
variable name:

(global-set-key [(meta up)] " = Slide(’’,
content=[BulletBlock(bullets=[

))’vv)

Bullet points can then be written. The end of the siide object is automatically
generated by this Emacs command (Alt + down-arrow):

, # end bullets and BulletBlock

global-set-key [(meta down)] "
)
s # end contents

(
]
]
M)

In order for these to work, the commands need to be included in the file .emacs in
your home directory. Sorry, no vim bindings!

Oldlatexslides

The source code from the old LaTexs1lides package can still be used. However it needs
a few modifications. We start by importing the module:

import latexslides.old as LaTeXSlides
Here, we assume that the import statement in your old presentations was

import LaTeXSlides, NOt from LaTeXSlides import *. If you used the latter, you might
want to try

from latexslides.old import *

The only difference is that the header, titlepage, and footer objects are to be omit-
ted, meaning they should not be part of the list that is created at the end of the
talk. Finally, the header_footer argument that was used for each bullet-slide in the
old package is now a global variable set in the initialization of the main slides class,
and is the same for all slides.

Support

Please contact ilmarwesimula.no for bug reports, feature requests and general help.

21

